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The valveless impedance pump is a simple design that allows the producion or
amplification of a flow without the requirement for valves or impellers. It is based
on fluid-filled flexible tubing, connected to tubing of different impedances. Pumping
is achieved by a periodic excitation at an off-centre position relative to the tube
ends. This paper presents a comprehensive study of the fluid and structural dynamics
in an impedance pump model using numerical simulations. An axisymmetric finite-
element model of both the fluid and solid domains is used with direct coupling at
the interface. By examining a wide range of parameters, the pump’s resonance nature
is described and the concept of resonance wave pumping is discussed. The main
driving mechanism of the flow in the tube is the reflection of waves at the tube
boundary and the wave dynamics in the passive tube. This concept is supported by
three different analyses: (i) time-dependent pressure and flow wave dynamics along
the tube, (ii) calculations of pressure–flow loop areas along the passive tube for a
description of energy conversion, and (iii) an integral description of total work done
by the pump on the fluid. It is shown that at some frequencies, the energy given to the
system by the excitation is converted by the elastic tube to kinetic energy at the tube
outlet, resulting in an efficient pumping mechanism and thus significantly higher flow
rate. It is also shown that pumping can be achieved with any impedance mismatch
at one boundary and that the outlet configuration does not necessarily need to be
a tube.

1. Introduction
The principle of an impedance-based valveless pump can be demonstrated by

a flexible tube filled with fluid and connected at its ends to tubing of different
impedances. By complete or partial pinching of the flexible tube periodically at an
off-centre position relative to its ends, a complex series of waves is developed. These
waves travel along the tube and reflect at the wave reflection sites. As a result of these
wave dynamics, a net flow in a specific direction is observed. Unlike in peristaltic
pumps, the direction of the net flow and its magnitude nonlinearly depend on the
pinching frequency and duty cycle (Jung & Peskin 2001; Hickerson, Rinderknecht &
Gharib 2005; Hickerson & Gharib 2006).

The impedance pump is a simple design that offers a promising new technique
for producing or amplifying a net flow for both macro- and micro-scale devices
(Rinderknecht, Hickerson & Gharib 2005), without the requirement for valves or im-
pellers. Moreover, for specific pumping conditions (e.g. pinching frequency, amplitude,
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and duty cycle) the impedance pump may exhibit higher efficiency than a peristaltic
pump (Hickerson et al. 2005).

The concept of valveless pumping produced by frequent pinching of compliant
tubes has been studied for decades (Liebau 1954). Several experimental works on
the pump behaviour have been reported in closed (Liebau 1955, 1963; Ottesen 2003;
Hickerson et al. 2005; Rinderknecht et al. 2005) or open (Liebau 1954; Hickerson et al.
2005; Rinderknecht et al. 2005) systems. Several attempts have been made to explain
the physical mechanism that drives a net flow in a specific direction in the impedance
pump, using analytical or computational models (Rath & Teipel 1978; Thomann
1978; Moser et al. 1998; Kenner et al. 2000; Jung & Peskin 2001; Borzi & Propst 2003;
Ottesen 2003; Auerbach, Moehring & Moser 2004; Manopoulos, Mathioulakis &
Tsangaris 2006). To make the problem tractable, these models often included
simplifications and limiting assumptions, thus limiting the validity of the explanation.

Thomann (1978) introduced a one-dimensional analytical model of a closed loop
assuming inviscid flow and significant damping of waves in the flexible part. Though
Thomann’s model predicted a net flow in a specific direction, it mainly attributed the
pumping to inertia effects. Moser et al. (1998) suggested a linear electrical analogue
model, assuming a closed loop with two distensible reservoirs. The net flow was
attributed to inertia and the impedance difference between the two reservoirs. Using
that model, they have predicted relations between the net flow rate and the pinching
frequency. However, both Thomann and Moser et al. were unable to predict the
resonant behaviour of the pump or to predict net flow in an open system.

The dominant role of the wave dynamics in the pump was first introduced by Jung &
Peskin (2001). They simulated the flow in a two-dimensional valveless pump in a closed
loop using the immersed boundary method. They described the flow field and the
waves travelling along the elastic tube for several cases. They presented examples
of pressure waves along the tube and observed some unique wave characteristics in
specific cases, such as standing pressure waves in maximal negative flow and travelling
pressure waves in maximal positive flow. Their results showed a strong dependence
of the net flow on pinching frequency and amplitude: changes in either amplitude
or frequency led to nonlinear changes in flow magnitude or direction. However, this
model used relatively low mesh and time step resolution, few cases were studied and
the mechanics of the pumping action was not described.

Ottesen (2003) presented a simplified one-dimensional numerical model of a closed
loop system using periodic boundary conditions. The results were qualitatively
compared with experiments. They implied dependence of the flow on pinching
amplitude, location, duty cycle, and tube elasticity, and showed a nonlinear dependence
of flow rate upon pinching frequency. However, perhaps due to relatively low damping
in their model, their results did not seem to converge to a periodic flow and the
flow rates obtained were relatively small in comparison with the amplitude of the
oscillations.

An improved one-dimensional model was presented by Manopoulos et al. (2006)
that used a higher degree of accuracy and took into account the effects of the
hydraulic losses due to the stenosis. This allowed convergence to periodic conditions
in all the cases considered, with tube contraction ratios as high as 98.5%. Their results
exhibit resonance behavior at frequencies close to the natural frequency. Similar to
Jung & Peskin (2001), they also observed a nonlinear dependence of the flow upon
pinching amplitude, as well as on some additional parameters such as tube length and
pincher width. In their study they presented an example of both pressure and flow
waves along the tube, and reported a phase difference between the pressure and flow
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at the tube edges, with a peak value during compression, and suction during tube
release. Yet, relying on previous hypotheses by Kenner et al. (2000), they claimed that
the driving mechanism in the pump is mainly attributed to asymmetry in hydraulic
losses. This explanation does not clarify the reasons for positive flow, flow in open
loops or resonant behavior.

Borzi & Propst (2003) used a one-dimensional simplified set of equations to
demonstrate a valveless pump in an open system. Their results showed that an
open loop system could create both net flow and net pressure head. The pump
characteristics, model simplifications, boundary conditions and solution factors were
discussed, with a specific emphasis on the damping affect in the various models.
However, an explanation of the driving mechanism of the pump was not given.

Hickerson & Gharib (2003) suggested the wave reflection at the tube end as a
dominant component in the pump action. In a comprehensive experimental study
(Hickerson et al. 2005), they referred to the physical dynamics of the pump and
investigated several parameters (pincher location and width, pinching frequency,
transmural pressure and loop resistance). They suggested that the main pumping
mechanism is the wave dynamics developed along the tube, which interact most
efficiently at resonant frequencies.

This concept was further demonstrated in a one-dimensional open loop model
(Hickerson & Gharib 2006) based on interactions of pressure waves along an
elastic tube with reflection sites. Using this simple model, they could predict some
of the characteristics of impedance pumping, proving the major role of wave
reflection/interaction in the behavior of the system. However, this simple model
did not incorporate the fluid dynamics in the tube, nor the mass, inertial or viscosity
effects, and thus the investigation of pumping mechanisms using that model was
limited. An additional observation that was introduced in their study was that the
resonant behavior is correlated with the natural frequencies of the tubing system as
obtained from the system’s impulse response. A similar observation was made later
by Manopoulos et al. (2006) in their one-dimensional numerical model.

To motivate a better understanding of the complex flow and wave dynamics in
the impedance pump, and to explore the physics of its resonant behavior, this work
presents a comprehensive numerical study of the fluid and structure dynamics in the
impedance pump. A numerical model of an impedance pump in an open system is
presented, including the complete partial differential equations (PDE) governing the
axisymmetric problem (the Navier–Stokes and structural dynamics equations), where
the fluid and structural domains are fully coupled at the interfaces. Results for a wide
range of pumping conditions are described, and the resonant nature of the pump is
demonstrated. The wave dynamics for resonant and non-resonant cases are depicted
and characterized. The energy regime along the tube is analysed, and the physical
mechanisms driving the net flow are discussed.

2. Methods
2.1. The physical, mathematical and numerical models

The impedance pump is simulated as a straight Latex elastic tube filled with
water, connected to equal-pressure rigid reservoirs at its both ends, and subjected
to radially contracting pinching at a given frequency. To simplify the simulations,
an axisymmetric model is used. The model dimensions and material properties
resemble the experimental model reported in Hickerson et al. (2005). The tube length
is L =15.2 cm, with inner diameter dint =1.91 cm and wall thickness h = 0.08 cm.
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Figure 1. An illustrative sketch of the axisymmetric model, at rest (a) and under pinching
(b). The illustration presents the elastic tube, the ring-like pincher, the reflection sites, the inlet
and the outlet. The following parameters are shown: tube external and internal diameters (dext

and dint ), tube length (L), wall displacement from resting diameter (D), pincher location (z),
pincher width (w), and maximum pinching (Umax).

The pincher width is w = 2.54 cm; the Latex elastic tube has elasticity modulus of
E = 100 kPa, Poisson’s ratio of ν = 0.3 and density of ρt = 1 g ml−1; the fluid was
defined as water.

Due to the axisymmetric assumption, the numerical model had a few differences
with respect to the experimental model. The radial contraction at pinching does
not conserve the tube circumference. This radial pinching is different from the flat
pinching in the experiments. However it has been shown in the experiments that the
shape of the waves is non-radial only in the vicinity of the pincher and two diameters
downstream of the pincher the waves are radial even if the pinching is flat (Hickerson
2005). Thus, this simplification may change the wave velocity, but does not affect the
characteristics of the flow and structure in a typical impedance pump.

A finite-element scheme was used to solve the set of motion and fluid equations
using the commercial software ADINA (ADINA R&D Inc., MA). The numerical
model (illustrated in figure 1, see also figure 11) included the elastic tube, the pincher
and the fluid. The numerical calculations incorporated the contact of the pincher
with the elastic wall, the dynamics of the flexible tube, the fluid–structure interaction
between the solid and the fluid at the interface, and the dynamics of the fluid.

The dynamics of the flexible wall were calculated using the linear dynamics response
of a system:

MÜ + CU̇ + KU = R (1)

where M, C, and K are the mass, damping and stiffness matrices; R is the vector of
externally applied loads; U = (uy, uz) is the displacement vector and U̇ and Ü are the
velocity and acceleration vectors of the structural domain, respectively (Bathe 1996,
p. 672).

The maximal strains of the flexible wall were around 30%, which are in the linear
range of the material elasticity (Hickerson 2005), thus large deformations and small
strain were considered in the simulations and the stress–strain relationship of the
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viscoelastic material was assumed to be linear:

σ = E(ε + ε0) (2)

where ε and σ are the instantaneous strain and stress, respectively, and ε0 is the initial
strains

The flow and pressure fields were calculated by solving numerically the equations
governing momentum and continuity in the changing fluid domain (moving mesh)
(Rosenfeld & Kwak 1991):

∇ · V = 0, (3)

ρw

(
∂V
∂t

+ (V − V g) · ∇V

)
+ ∇p = μ∇2V , (4)

where V = (vy, vz) is the flow velocity vector and V g is the velocity vector of the
moving local coordinates, p the static pressure, t the time, ρw =1gml−1 and μ =
0.01 g cm−1 s−1 are the density and the dynamic viscosity of water, respectively. The
ALE moving mesh approach (Bathe 1996, p. 768) was used to adjust the mesh to the
boundary motion.

At the fluid–structure interfaces, displacement compatibility (for no-slip conditions)
and traction equilibrium were applied:

Vf = U̇ s, n · τ f = n · τ s, (5)

where Vf and U̇ s are the fluid and solid velocities at the interface, respectively and τ f

and τs are the fluid and solid stresses, respectively. The fluid and structure domains
were coupled at the interface, using two-way coupling (simultaneous solution method),
where the fluid equations and the solid equations are combined and treated as one
complete system of linear equations (Rugonyi & Bathe 2001).

The pincher was modelled as a moving rigid surface with prescribed harmonic
motion dictated by the excitation parameters of each case: pinching frequency (f ),
pinching amplitude (A, the ratio between the maximal pinching Umax and the tube
radius R) and duty cycle (DC , the ratio between the duration of active pinching and
the cycle period). The time-dependent pincher location U (t) was determined by:

U (t) = β + R + α sin[2πf (t − φ)] (6)

where t is time, and δ, β andφ are mathematical constants defined as:

Umax = AR,

δ =
Umax

1 − sin(π(0.5 − DC)
,

β = Umax − δ,

φ =
2DC − 1

4f
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(7)

Once the moving pincher crossed the outer surface of the tube wall, ADINA’s contact
analysis was employed using the Constraint-Function method (Bathe 1996, pp. 625–
628; ADINA R&D 2005).

In order to model an elastic tube connected to two equal-pressure rigid reservoirs,
similar to the experimental model (Hickerson et al. 2005), the tube ends were fixed
and zero pressure conditions were employed at both inlet and outlet. The rigid
connections were simulated by fixing both ends of the elastic tube. This was carried
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out by imposing zero displacement uy = uz = 0 on the nodes at the two edges of the
solid model, resulting in full reflection of the elastic waves. The fluid at the tube ends
was subjected to zero normal traction boundary conditions. The normal traction is
defined as the normal stress (τnn = n · τ · n) which consists of the pressure and the
normal shear stress (τ being shear stress tensor n, the normal to the boundary). Since
the prescribed pressure at the outlet was assumed constantly zero, these conditions
resulted in stress-free conditions at both ends (ADINA R&D 2005, p. 90).

The fluid and solid domains were meshed with 4-noded axisymmetric elements.
The mesh was refined in both the solid and fluid domain around the excitation
zone. According to mesh and time-step independence tests (for working conditions of
z = 2.54 cm, A = 80%, DC = 20%, f = 4 Hz, where these parameters will be defined
later), a model with a total of 8000 elements and 1000 steps per cycle was found to
give average accuracy within 2%. All simulations began at a state of rest both at the
fluid and solid domains (U = 0, V = 0, D = 0, p = 0). Each calculation continued
for 30 pumping cycles, when a complete steady periodic state was always achieved.

3. Results
3.1. Wave speed and natural frequency

First, the inherent properties of the model were calculated. The simulated speed of
a single pressure wave propagating along the tube was 180 cm s−1. This value agrees
with the approximated Moen–Korteweg formula for waves in a fluid field elastic tube
(Zamir 2000):

c0 =

√
Eh

ρwd
≈ 200 cm s−1. (8)

The response of the system to impulse pinching was examined by following the
dynamics of the pump as a response to a single pinch for different pinching locations.
In each case, a single short pinching of radius contraction at A= 80% was imposed
for 0.02 s and then the model was released to oscillate at the system’s natural frequency
for 4.5 s, with sampling intervals of 0.002 s. The same natural frequency of 6.12 Hz and
its harmonics at 12.23 Hz and 18.09 Hz were found for different pinching locations,
for different sampling locations and for different parameters (flow, pressure and wall
displacement). For example, the time-dependent wall displacement and its spectral
density are given in figure 2. This natural frequency is equivalent to the rate at which
a single wave would travel back and forth the length of the tube at a speed of
186 cm s−1.

3.2. Bulk flow rate and transient response

An algorithm for flow rate calculation at the distal outlet (marked ‘outlet’ in figure 1)
was developed by integrating the velocity profiles over the outlet elements. Flow rates
are considered positive when flow exits the distal end. A typical transient response of
flow rate is shown in figure 3. As shown by the plot, there is a transitional stage for
the flow to build up (rise time) before the average flow reaches its steady-state mean.
After reaching a steady periodic state, the average flow rate in a pinching period
is an indication of the bulk flow of the pump for the specific pumping condition.
The complex dynamics of reflecting and interacting waves in each case results in a
different number of cycles in the build-up. The rise time is defined as the number of
cycles required for the bulk flow rate to reach 98 % of its final level.
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Figure 2. System’s response to impulse pinching: (a) the transient response of wall displace-
ment of the elastic tube 3 cm downstream the pincher; (b) power spectrum density (using fast
fourier transform) of the signal, indicating a natural frequency at 6.12 Hz and harmonics at
12.23 Hz and 18.09 Hz.
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Figure 3. A typical transient response of the outlet flow rate. The solid line is a filtered curve
of the flow rate using a moving average window of one cycle. The average flow rate of the
periodic phase in this case (9.5Hz) is 187ml s−1.
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Figure 4. Non-dimensional flow rate as calculated from the simulations, and as measured
experimentally by Hickerson (2005) as a function of (a) pinching location along the tube, (b)
pinching amplitude, and (c) pinching duty cycle.

3.3. Effect of pinching parameters

In the second stage, the effects of the pinching location, amplitude, duty cycle, and
frequency on the outlet bulk flow were examined. The calculated bulk flow as a
function of these parameters is shown in figure 4 and figure 5. For comparison with
experimental results, the flow rate in figure 4 is non-dimensionalized by half the rate
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of volume displaced by the pinchers as suggested by Thomann (1978) and Hickerson
et al. (2005).

Pinching location

The pinching location (defined as z in figure 1) is presented in figure 4(a) as a
percentage of the total length of the elastic tube (L). As the location of the pincher
shifts towards the centre, the bulk flow rate reduces to a negligible level. Shifting
of the pincher further towards the outlet end resulted in negative net flow behaving
symmetrically. These results are in agreement with experimental data collected by
Hickerson (2005). The negligible non-zero flow rate around the 50% location in
Hickerson’s experimental results was not addressed by the author, and may be the
result of a cumulative affect in the calculation of average net flow from several cycle
measurements.

Pinching amplitude

For the fixed pinching frequency f = 4 Hz and z = 2.54 cm (location =16.7%), the
flow increases with pinching amplitude A (figure 4b). These results are in agreement
with Hickerson et al. (2005), and are somewhat different from results in closed loops
(Jung & Peskin 2001; Manopoulos et al. 2006) which both found nonlinear correlation
between the flow and the pinching amplitude.

Duty cycle

In the present work, the duty cycle (DC) was defined as the ratio between the
duration of active pinching and the cycle period. figure 4(c) shows that in the cases
simulated, larger bulk flow is obtained for smaller duty cycles. These results also agree
with the experiments reported by Hickerson (2005). (Note the different definition of
DC in the reference.)

Pinching frequency

To examine effect of pinching frequency, a series of simulations were performed
to scan the pinching frequency range 2–20 Hz. In order to optimize computational
effort, non-uniform frequency test intervals were used. Higher resolution tests were
conducted in ranges of interest. The corresponding non-dimensional Womersley
range as suggested by Hickerson et al. (2005) for these frequencies is 13.5–40,
where Womersley number is defined as α =

√
ρf /μ. However, such non-dimensional

generalization should be considered with care, since it might exclude non-linear
factors in the structural system (the elastic tube) which cannot be non-dimensional
using Womersley’s number. Therefore, in this case, the dimensional results are
given.

In all the frequency-test simulations, the other parameters A= 70 %, DC = 20 %
and z = 2.54 cm were kept constant. The results are shown in figure 5. Higher bulk
flow was obtained for frequencies 5.9 Hz (α = 23) and 11.5 Hz (α =32.2). These results
correspond to the model’s natural frequency of 6.12 Hz and its harmonics, thus
agreeing with the hypothesis of a resonant mode. A comparison with the experiments
was conducted for similar conditions (DC = 20 %, z = 2.54 cm, A= 70 %). There were
data only for frequency range f = 1–10 Hz, where the low computational resonance
frequency (f = 5.9Hz) correlates well with the experimental resonance frequency
f =6.3 Hz. The differences in flow rate values are attributed to the different pinching
method (flat pinching versus ring-like pinching) and the connected tubing (closed
loop versus open loop).
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3.4. System rise time

Figure 6 depicts the rise times, defined in figure 3, measured in number of cycles, for
all the simulated cases in the frequency range 2–16 Hz (black line). The rise time plot
is compared with the bulk flow rate magnitude. The shortest rise times are found
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Figure 7. An example of the simulated flow field of the high-flow case 11.5 Hz. Streamlines,
pressure and z-velocity plots (bottom) at. tn =0.12. The location of the pincher, the velocity
node (VN) and the outlet cross-section are indicated by dotted lines. The ‘pumping region’
downstream of the velocity node is also indicated.

at frequencies with extremely high flow rates (f = 6 and 12.5 Hz) or extremely low
flow rates (f = 9 Hz) (marked with circles on the plots), while longest rise times are
found at ‘transitional’ frequencies (f = 5.6, 7.6, 10.3, and 14 Hz) which lie on the
slopes between high and low flow rates (marked with squares). These results are
in agreement with some qualitative observations reported by Hickerson (2005) and
indicate the complex and delicate balance between constructive and destructive wave
interactions taking place in the steady periodic flow field. In the extreme cases, the
wave dynamics is led by a dominant wave system (either constructive or destructive),
and thus converge faster to steady state. In the transitional cases, on the other hand,
the waves dynamic is less clear, and thus it requires more waves to participate in the
complex waves system until the flow converges to periodic conditions.

3.5. Waves dynamics along the tube

From the numerical simulation, a full description of the time-dependent fluid and
structure fields is given, as shown for example in figure 7. In addition, in figure 7
the locations of three specific cross-sections along the tube to be referred later are
indicated: the pincher, the velocity node (VN) and the outlet cross-section, and the
‘pumping region’ between the VN and the outlet.

Figure 8 shows waves envelopes formed from flow rate, pressure and wall
displacements along the tube at different times within the periodic cycle, for seven
typical cases. The wall displacement (D) is measured from the tube resting radius.
In all the envelopes formed, wave characteristics are observed including nodes and
antinodes, where nodes are points where the parameter variations are minimal, and
antinodes are points that undergo large variations (Nichols & O’Rourke 1998).

Downstream of the pincher, there is a strong correlation between pressure and wall
displacement due to the linearly elastic properties of the tube wall and the relatively
uniform distribution of pressure in the tube cross-section. The flow envelopes behave
differently from the pressure due to the phase lag between velocity and pressure in
the elastic tube. In all the cases a ‘velocity node’ (VN) is observed downstream of the
tube, in the vicinity of a pressure antinodes. The axial location of the VN is different
for each case and is marked on the plots by dashed lines.
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The largest variations of pressure and radial displacement are found near the VN
of the high flow case (11.5 Hz), as marked in figure 8, with �Pmax = 42 500 dyn cm−2

(4.25 kPa) and �Dmax = 0.5 cm. As will be shown later, these VN also have special
significance for the relationship between elastic and kinetic energy along the tube.

3.6. Pressure and velocity fields

Figure 9 shows plots of the time-dependent flow and pressure fields along the tube
for nine time sequences during a pinching cycle of the resonant case, f = 11.5Hz. As
mentioned before, the pressure downstream of the pincher is correlated to the tube
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Figure 9. Flow and pressure in the model shown for nine instances along a typical pinching
cycle of the high-flow case (11.5Hz). At the left the normalized time is indicated for each
instance, and is marked by a point on the time-dependent plot of outlet flow (second column)
and pressure at the velocity node (third column). In the fourth and fifth columns, flow and
pressure are shown along the tube. The single and double line arrows on the plots indicate
pressure and flow waves, respectively: dark arrows indicate waves originated by the pinching
and light arrows indicate waves originated by restoring forces. Dashed arrows indicate waves
that were originated in the previous cycle.

with radius. Time is indicated by normalized time tn = tf . Each sequence is indicated
by a dot on the plots of the time-dependent flow at the outlet, and the pressure at the
VN. Pressure and flow waves travelling along the tube are indicated by arrows and
denoted by ‘P’ and ‘F’ with subscript numbers respectively. Below, six stages along
the cycle are detailed, describing the periodic wave dynamics in the tube.

Stage 1: Just before pinching (figure 9a)
The cycle starts just before pinching, with a forward flow pulse (F0) that originated

in the previous cycle travelling downstream towards the outlet and a high-pressure
wave that (P+

0 ) travels backwards upstream. At that instant both the time-dependent
outflow and VN pressure approach local maxima.

Stage 2: Pinching and releasing (figure 9b, c)
As a result of the pinching, a forward flow pulse (F1) and a high-pressure wave

(P+
1 ) are formed and travel downstream in the tube. As the pincher is released, a

low-pressure wave that is a result of restoring forces at the pinching location (P−
2 ) is

formed and travels downstream as well. This wave is followed by a second flow pulse
(F2) emerging from the tube inlet.
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Stage 3: P+ wave interaction – tube expansion (figure 9d, e)
At tn =0.34, the pressure wave (P+

1 ) interacts with the backward high-pressure wave
(P+

0 ) near the VN. The interaction of the two high-pressure waves (P+
1 and P+

0 ) results
in a combined high-pressure wave (P+

C1). Since the forward wave (P+
1 ) is stronger than

the backward wave (P+
0 ), the resulting wave (P+

C1) travels downstream with decreased
amplitude. Consequently, the time-dependent VN pressure reaches a maximum. As
a result of the increased VN pressure, the tube is locally expanded and produces a
volume suction of fluid to fill the cavity. This suction draws and enhances the flow
pulse F1 that reaches the tube end and thus increasing the time-dependent outlet
flow.

Stage 4: waves reflections (figure 9f )
The combined pressure wave (P+

C1) reaches the tube end at tn = 0.4 and is reflected
by the reflection site. On reflection, both its sign and direction are reversed, thus it
starts travelling backwards (upstream) as a low-pressure wave (P−

C1). At this stage,
the flow pulse (F1) is reflected at the tube end as well, and the time-dependent outlet
flow starts decreasing.

Stage 5: P− wave interaction – tube compression (figure 9f, g)
At tn =0.74, the low-pressure wave (P−

2 ) reaches the VN, where it meets the
backward combined wave (P−

C1). The interaction of the two low-pressure waves near
the VN results in a minimum pressure and rapid tube compression. Since P−

2 is
stronger than P−

C1, the combined pressure wave (P−
C2) travels downstream.

Stage 6: P− wave reflection (figure 9h, i)
As it reaches the tube end at tn = 0.84, the combined low-pressure wave (P−

C2)
is reflected by the tube end and travels backwards as a high-pressure wave (P+

C2).
Consequently, the tube is rapidly expanded at the VN, resulting in strong volume
suction. In order to fill the expanded tube, the backward flow F1 and forward flow F2

propagate towards the VN. Since F2 is much stronger than F1, the combined wave
FC2 is positive (towards the outlet). After passing the high-pressure region (of P+

C2),
the flow FC2 is washed out by the pressure gradient. As a result, the time-dependent
outlet flow undergoes a rapid increase. At this stage a new cycle begins, while the
waves FC2 and P+

C2 are F0 and P+
0 of the next cycle, respectively.

3.7. P-Q loops as indication of energy transform

The time-dependent pressure and flow of the high-flow case were extracted at three
points in the vicinity of the VN (z = 10.42, 11.21 and 12 cm). Figure 10 shows the
periodic pressure and flow at these points plotted as a function of time, and in
pressure–flow loops (P-Q loops). The P-Q loops are marked by dark and light arrows
indicating loop direction. Dark arrows indicate clockwise loop direction, implying
cases in which the flow follows the pressure. Light arrows indicate a counterclockwise
loop direction, implying cases in which flow precedes pressure.

The physical significance of P-Q loop area is power (energy per cycle period), where
clockwise (dark arrows) loops represent power given to the fluid by the elastic tube,
and counterclockwise loops (light arrows) represent conversion power given to the
elastic tube by the fluid. In this analysis, the energy of the fluid in the tube consists
of kinetic and potential energy and will be referred to henceforth as ‘fluid energy’ (to
distinguish it from ‘elastic energy’).
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Figure 10. Pressure and flow rate as a function of time (left), and pressure-flow loops (right)
at three points in the vicinity of the velocity node for 11.5Hz. Dark arrows indicate clockwise
loop direction, and light arrows indicate counterclockwise loop direction. (a) z = 10.5 cm, (b)
z = 11.2 cm, (c) z = 12 cm.

To obtain the power given to the fluid at each point, the total area of each loop
was calculated, considering clockwise loops as positive and counterclockwise loops as
negative. The loops change direction on passing through the VN, where at the VN
(at z = 11.21 cm) the area of the P-Q loop collapses to minimum.

Similar P-Q loops are plotted in figure 11 at seven points downstream in the tube
for three representative frequencies (low-flow cases: 9 and 14 Hz and high-flow case
11.5 Hz). The sampling points 1–7 are distributed evenly along the long passive region
of the tube between z = 4 cm and z = 14 cm. Point 1 indicates the power given to the
fluid by the pincher. Point 7 indicates the energy given to the fluid at the outlet (i.e.
total resulting power of the pump). The VN of the 11.5 Hz case is located between
points 5 and 6. The P-Q loops shown have the same scale as figure 10 and are
shaded according to their direction, as specified above (dark for clockwise and light
for counterclockwise).
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Figure 11. Pressure–flow loops taken at seven points along the tubes for representative cases
(9, 11.5, 14Hz) (areas filled with dark shading indicate clockwise loop direction and areas filled
with light shading indicate counterclockwise loop direction).
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Figure 12. P-Q Loops areas for 9, 11.5 and 14 Hz as calculated at 21 points along the
passive tube (points 1–7 are marked for reference with figure 11).

Loop areas of the above three representative cases as calculated at 21 points along
the long passive region are shown as a function of axial location z in figure 12. The
areas of the loops are changing along the tube for all the frequencies simulated, where
negative areas indicate conversion of fluid energy to elastic energy, and positive areas
indicate elastic energy converted to fluid energy. For each case, the loop area changes
sign at its VN. That means that the region downstream of the VN is where the
‘pumping’ occurs, i.e. conversion of the elastic energy of the tube into fluid energy
(see ‘pumping region’ in figure 7).

3.8. Calculation of total work done on the fluid

In order to extract the net power added to the fluid by the elastic tube at each cycle,
the accumulated power given to the fluid was calculated for all the cases f =8–15 Hz
using integration of the P-Q loop area along the passive region z = 4–14 cm:

Ẇacc =

∫ z=14 cm

z=4 cm

(PQarea) dz (9)



Resonant wave pumping in compliant tubes 155

Wwall: mechanical work by the walls

Ein:input energy
Eloss: energy loss

input Output

Control volume ∀ 

150

250

8 10 11 12 13 14 15

Frequency (Hz)

F
lo

w
 r

at
e 

(m
l s

–1
)

–0.5

0

0.5

T
ot

al
 w

or
k 

(J
)

0.5

2.0

A
cc

um
ul

at
ed

 p
ow

er
(W

 c
m

)

(b)

(c)

(d)

(a)

9

Figure 13. Calculation of energy and power along the passive tube: (a) illustration of the
control volume, (b) accumulated power converted to fluid energy, (c) total work done on the
fluid, compared with bulk flow rate (d) for frequencies 8–15Hz.

The results are shown in figure 13b. It is shown that more power is accumulated for
the high flow cases (11–13 Hz).

For further study of the pumping power transferred to the fluid by the elastic tube,
an energy calculation was performed based on the method described in Loumes,
Avrahami & Gharib (2008). The control volume (∀) selected for the calculation is
defined as the long passive region (illustrated in figure 13a), bounded by the elastic
tube and the cross-sections z = 4 cm (input) and z = 14 cm (output). In this control
volume, the work rate performed by the elastic walls Ẇwall is

Ẇwall =
∂

∂t

∫
∀
eρ d∀ + Ėout − Ėin + Ėloss (10)

Where e is the total energy (e = ethermal + ekinetic) in the control volume ∀, Ėloss is losses
due to viscosity and convective heat losses per cycle, and Ėin and Ėout are the input
and output fluid energy fluxes, respectively.

Assuming periodic conditions, the change in the control-volume internal energy
during each cycle is zero. Therefore, the total pump energy added to the fluid at each
cycle in the long passive region Wpump can be described as:

Wpump =

∫
T

(Ẇwall − Ėloss ) dt =

∫
T

(Ėout − Ėin) dt. (11)
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The input and output energy fluxes through the control surface were calculated from
their kinetic and potential components (for further details refer to Loumes et al. 2008):

Wpump =

∫
T

(∫∫
CS

[
ρ

v

2

2

+ p

]
v · dS

)
dt

=

∫
T

[
ρ

2

∫∫
output

v3 dS − ρ

2

∫∫
input

v3 dS

]
dt

+

∫
T

[∫ Qt+T

Qt

pout dQout −
∫ Qt+T

Qt

pin dQin

]
dt

= (Ekout
− Ekin

) + (Epout
− Epin

) (12)

The resulting contribution of the passive tube to the fluid energy for the
frequencies 8–15 Hz is shown in figure 13(c). It is distinctly seen in the plot that
for the low flow cases, the tube acts as a resistor where energy is decreasing along
the tube, while in high flow cases (11–12 Hz) the total work performed by the passive
tube is greater than zero. This result is further evidence that in resonant cases, not
only that the passive tube is not a resistor, but it is a pump – the pumping takes place
in the ‘pumping region’ and is a result of the unique wave dynamics in that region.

4. Discussion
In this numerical study of impedance pump behavior, the fully coupled fluid and

structure flow fields were solved, and a detailed description of the unsteady flow field
is given for a wide range of cases. Using numerous simulations of various pinching
parameters, several characteristics of the impedance pump are depicted. The effect of
pinching location, duty cycle, amplitude and frequency were evaluated and found in
agreement with the experimental results (Hickerson et al. 2005).

4.1. Resonance behaviour

According to the rise time calculated for the various cases (figure 6), it may be
concluded that until the system converges to periodicity, waves originated in several
pinching cycles are accumulated in the field and participate in the complex wave
dynamics. Thus, the periodic flow field is a result of combinations of waves from
several pinching cycles. In the present study, the flow field is affected by waves that
travel in the tube for up to 15 cycles. In the experimental results of Borzi & Propst
(2003), rise times were of more than 25 cycles, and in Hickerson (2005) rise times were
of the order of 5–10 cycles. The difference between the systems may be attributed to
tube material and damping properties.

After reaching periodic conditions, the flow in the pump is very sensitive to the
unique arrangement and timing of elastic and flow waves formed in the tube, and
thus to pinching frequency. This is the key to the resonant nature of impedance
pumping.

Figure 5 shows that the resonance frequencies (5.9 Hz and 11.5 Hz) are slightly
shifted from the natural frequency of the tube (6.12 Hz) and its harmonics (12.23 Hz).
According to Crowell (2006), the resonance frequency, fres (at which the response
amplitude of a system to vibrations is maximal), should be slightly smaller than the
system’s natural frequency, f0 (at which it will vibrate as a response to impulse), given
by:

fres =

√
f 2

0 − 1
2
FWHM2 (13)
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where FWHM is the full width of the resonance peak at half-maximum, which is
strongly influenced by the system damping (Crowell 2006). Based on figure 5, the
corresponding resonance frequencies for the first and second peaks should be:

FWHM1 ≈ 2 Hz ⇒ fres1 =
√

(6.12 Hz)2 − 1
2
(2 Hz)2 = 5.95 Hz,

FWHM2 ≈ 4 Hz ⇒ fres2 =
√

(12.23 Hz)2 − 1
2
(4 Hz)2 = 11.9 Hz,

which are strongly correlated with the resonance frequencies obtained. A similar result
was found experimentally by Hickerson et al. (2005). However, Manopoulos et al.
(2006) found fres >f0 in their one-dimensional numerical model. It may be suggested
that other factors, such as radius reduction by the pincher or a lower pressure regime
in the tube (due to the high flow produced in the tube) reduce the waves velocity and
may also contribute to a frequency shift.

Since in some frequency ranges (3–5 Hz) frequency test resolution is lower than of
the ranges of interest, there might be a slight chance that some insignificant narrow
peaks between the tested frequencies are not shown.

4.2. Pumping mechanism

The basic mechanism by which a net flow is obtained in the impedance pump is
revealed from the simulated flow and pressure fields. Three sequential major factors
participate in driving the flow: inertia, volume suction, and pressure gradient.

Inertia
In each cycle, two flow waves emerge from the upstream region of the tube: F1,

originated by the pinching and F2 by the restoration of the tube. These flow waves
propagate downstream in the region between the pincher and the VN mainly by
inertia (shown by negative flow loops). However, the main mechanism that drives the
net flow in the tube is concentrated at the end of the elastic tube downstream of the
VN, in the region indicated as ‘pumping region’ in figure 7.

Volume suction
The pumping action in the pumping region is mostly a result of pressure wave

interaction and reflection. The two pressure waves originated by the pinching (P+
1 ) and

the restoring forces (P−
2 ) propagate downstream and interact with backward waves

(P+
0 and P−

C1). The forward waves are usually stronger; therefore, after interaction the
combined waves (P+

C1 and P−
C2) are directed downstream towards the tube end. These

combined pressure waves are reflected, reversing signs and directions (P−
C! and P+

C2).
All these wave reflections and interactions occur in the pumping region, where the flow
loop areas are positive, resulting in a rapid wall expansion (stage 5). This intensive
expansion leads to strong volume suction at the VN. Two flow waves of opposite
directions merge to fill the void. The average flow rate at the VN is determined by
the absolute momentum of these waves, and is the dominant parameter for the net
flow in the pump. Figure 8 shows that for the cases with higher flow rate, the tube
expansion is larger and the average flow at the VN is higher.

Pressure gradient
The stronger flow wave of the two will continue down the pressure drop after

passing the pressure rise. This mechanism will produce positive net flow as long as
the combined flow wave has enough momentum to overcome the pressure rise and
continue downstream to the outlet. This is the situation in all the cases shown in this
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paper, and therefore the average flow found at the VN for all the cases is positive
and no negative net flow is observed.

4.3. Energy regime

Another way to look at the unique fluid and structure dynamics in the impedance
pump is through energy conversion. The energy given to the system by the pincher is
divided into elastic energy and fluid energy. As shown in figure 12, these two energy
forms interchange in turn during the pinching cycle along the long part of the elastic
tube (downstream of the pincher).

In the upstream section of this region (just downstream of the pincher), the energy
given to the fluid is converted to elastic energy. This is shown in figure 12 as a
reduction of the loop areas. The VN is the point where the elastic energy of the tube
starts to be converted to fluid energy. The conversion of elastic energy to fluid energy
in the pumping region is attributed to the rapid tube expansion followed by volume
suction. The net energy carried by the fluid at the outlet during a complete cycle
represents the pumping energy of the pump (i.e. pincher and tube). Therefore, the
pump’s performance is related to the amount of elastic energy converted into fluid
energy in the pumping region downstream of the VN. An efficient energy conversion
will result in high accumulated energy in the fluid.

According to figure 13(b), in all the simulated cases, the accumulated energy along
the ‘long passive region’ is positive, meaning addition of energy to that given to the
fluid by the pincher, at the expense of elastic energy from the elastic tube. Thus, the
dynamics of the elastic tube enhanced the power of the flow by converting both the
fluid and elastic energy given to the system by the pinching, mostly to fluid energy at
the outlet. Moreover, according to figure 13(c), in the high flow cases the fluid outlet
energy is even higher than the input fluid energy (of the fluid energy downstream of
the pincher), meaning that at these cases the added energy is even higher than the
losses along the way.

The study presented mainly addresses the flow dynamics in the long passive
region (downstream of the pincher). The shorter, upstream section of the tube (the
region between the tube inlet and the pincher, i.e. z =0–1 cm) is too short for
resonance effects to appear. We assume that if this upstream section was longer,
at the appropriate frequencies, it might resonate as well. In such a case, when
the complete tube is considered, the two sections from both sides of the pincher
would compete with each other. Thus, the total net flow rate in the tube would
be determined according to the section with the preferred dynamics at the specific
conditions (frequency, amplitude, etc.). According to this hypothesis, such a scenario
could lead to negative net flow in the tube – when the dynamics of the upstream
section is favour. This hypothesis should be able examined in further work, and if
confirmed, it may explain the changes in net flow direction with pinching frequency,
location and even amplitude, as reported in other publications (Jung & Peskin 2001;
Borzi & Propst 2003; Hickerson 2005; Rinderknecht et al. 2005; Manopoulos et al.
2006).

In the present study, no negative flow cases were observed since such a configuration
did not occur because of the very short upstream section in the cases studied; in the
pinching location test, the short sections did not resonate due to the low frequency
used.

The results of this study prove that the main driving mechanism of the flow is
attributed to the specific wave dynamics along the passive tube, which is a result only
of the excitation at the pincher and reflection at the tube end. Moreover, in resonance
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cases, not only is the long passive tube not a resistor (where power is lost), but it is a
pump (a power source). These results reinforce the previous experimental observations
(Hickerson et al. 2005; Hickerson & Gharib 2006) and are in contrast to the mech-
anism proposed by previous studies (Thomann 1978; Moser et al. 1998; Kenner et al.
2000; Manopoulos et al. 2006) relying on fluid inertia or asymmetry in energy losses.

According to this work, pumping could be achieved with any impedance mismatch
at the tube boundary. The outlet configuration does not necessarily need to be a tube
or have different impedance. A reflection site can be a ring, a bifurcation or a local
geometry deformation. Moreover, pumping can be achieved even if the tube is not
connected to any other tubing, as long as it has wave reflection sites at its ends and
an active element producing frequent pressure waves at an asymmetric location. The
present numerical model simulates an elastic tube connected to two equal-pressure
reservoirs at its ends using rigid connections, similar to the experimental model
conducted by Hickerson et al. (2005), where the tube was connected to two connected
reservoirs. Therefore, it included only an elastic tube with complete reflection sites at
its ends, with zero pressure at both ends. Yet, even in that configuration, resonance
wave pumping was obtained.

The results presented here are of great significance when designing and optimizing
impedance pumps. Moreover, it was recently shown that the embryonic heart utilizes
impedance pumping to drive circulation in early embryonic stages prior to valve
formation (Forouhar et al. 2006). The model presented may be helpful for the
investigation of wave dynamics in the embryonic heart and in other applications of
the cardiovascular system.
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